AMS 11B Study Guide 1 ECON 11B
Solutions

1. Compute the indefinite integrals below.
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to simplify the integrand before integration. The integration will require substituting
u = 3t + 1. Alternatively, you can make this substitution in the original integral.
This also requires solving for ¢ (in the numerator):
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u=3t+1 = t:§(u—1) and u=3t+1 = du=3dt = dt:§du.

Using the second approach, we see that
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which is the answer your would get if you took the long-division approach. Note that
the constants 2/27 and 1/54 were ‘absorbed’ by the constant of integrations C.

1
. Find the function y = f(z), given that v/ = x — —, and f(1) =
T

1 2
/y’da::/:c——dx:x——lnm—l—(?.
x 2
2

Le., f(z) = % —In|z| + C, and we use the initial value to solve for C:

First, we integrate
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So, f(x) = 5 = In|z| + o

. Find the function y = g(z), given that 3’ = z* — 1, ¢’(1) = 2 and ¢(1) = 2.

First solve one initial value problem to find ¥, by integrating v":

e
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Next, solve for C' using the initial value for 3/:
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3
So, iy = ro_ x + —, and now we repeat the process to find y = g(x).
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giving the final solution g(x):%—%-f—;—z

. The marginal revenue function for a firm is
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Find the firm’s demand function.

The demand function p = f(q) is found by dividing the revenue function, r(q), by g,
i.e., p = r/q. The revenue function is found by solving the initial value problem, " =
200 — ¢*3,  r(0) = 0. First,

r= /200 — ¢**dgq = 200q — §q5/3 +C.

Next, the initial value r(0) = 0 implies that C'= 0, so r = 200q — 2¢*/3, and the demand
function is

p=" =200 3¢
q 5

. A firm’s fixed cost is $12000, and their marginal cost function is

d
d—; — (g + 1000)"/% + 50.

Find the firm’s cost function.
Another initial value problem. First,
3
c= /(q + 1000)'% + 50 dq = Lo+ 1000)*/3 4 50q + K,
(using the substitution u = g + 1000 to compute the integral). The initial values is given
by ¢(0) = 12000 (because fixed cost = ¢(0)), which we use to solve for the constant of

integration, K:

3
12000 = ¢(0) = 110004/3 + K =7500 + K = K = 4500.

3
So the cost function is ¢ = 1(1000 + q)*3 + 50q + 4500.



(*) The next two problems are solved using the same idea. If y = f(x) + C, then even if we
don’t know C, we can compute Ay — the change in the value of y — using the formula

Ay =y(z9) —y(z1) = f(z2) + C = (f(71) + C) = f(a2) — f(21).

L.e., the change in y does not depend on the constant. This is useful when we know the
derivative y, but not y itself. This is essentially the same as computing a definite integral,
which we will learn next.

6. A firm’s marginal revenue and marginal cost functions are
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100 - /3¢ + 10 and d—c — 0.2¢ + 65,
q
respectively. How will the firm’s profit change if output is increased from ¢ = 30 to
q =537

The profit function is given by m = r — ¢, so the derivative of the profit function (in this
problem) is given by
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This means that the profit function is given by
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using the substitution u = 3¢ + 10 = du = %dq in the last integral in first line.
It follows that the change in the firm’s profit is

Am = 7(53) — 7(30)
2 2
= (35 .53 —0.1-2809 — 5 1693/2> — (35 .30 —0.1-900 — 5 1003/2)

= 1085.8777 — 737.7777 = 348.10

7. The marginal propensity to consume of a small nation is given by

dC  9Y +10
dy — 10Y +1°
where consumption C' and national income Y are both measured in billions of dollars.

Find the total change in national consumption and saving, if income increases from $10
billion to $15 billion.



Using the substitution

1 1
u=10Y +1 = Y 10(u ) and dY 0 du

to compute the integral, we see that the nation’s consumption function is
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Observe that the constant 9/100 in the fourth line was ‘absorbed’ by the constant of
integration K. It follows that the change in consumption is

AC =C(15) — C(10) =0.9-1540.911n |151] — 0.9 - 10 — 0.91In |101| = 4.866,
and therefore the change in saving is
AS =AY — AC ~ 5 —4.866 = 0.134.

In words, if income increases from $10 billion to $15 billion, consumption will increase by
about $4.866 billion and saving will increase by about $134 million.

I also used the fact from economics that Y = C'+ S, so S = Y — C and therefore
AS =AY — AC.



