Example: Profit maximization.

Joint weekly demand functions for a firm’s competing products:

Qa4 =100 — 3P4 + 2Pp
Q@ =60+2P4 —2Pp
Weekly cost of producing () 4 units of product A and () g units of product

B:
C' =200 4 + 30Q B + 1200

Firm’s weekly profit function

II = PsQa+ PpQp —C
= P4(100 — 3P4 + 2Pg) + Pg(60 + 2P4 — 2Pp)
— (20(100 — 3P4 + 2Pg) + 30(60 + 2P4 — 2Pg) + 1200)
— —3P3 +4P4Pp — 2P% + 100P4 + 80P — 5000




Weekly profit function

Il = —3P% + 4P4Pp — 2P% + 100P,4 + 80P — 5000

First order conditions for max:

—6P4 +4Pg + 100 =0
4Py —4Pp +80 =0

Adding the two equations together gives an equation for the critical Py

value:

—2P, +180 =0 = P} = 90.

Substituting this in the second equation (IIp, = 0) yields the critical
Ppg value:

4-90-4Pp+80=0 — —4pp +440 =0 — Pz = 110.
The corresponding critical weekly outputs are

Q% =100 — 3Py +2P5 =50 and Q% =604 2P, —2P; = 20.




The critical weekly revenue is

R* = P5Q% + P5Q% = 6700,

the critical weekly cost is
C* =20Q7% + 30Q% + 1200 = 3800
and the critical weekly profit is

II" = R* — C* = 2900.

The critical question:

Is II* the maximum weekly profit?



Second Derwwative Test - Two Variable Case

First order conditions for a local extreme value of the function
z = f(x,y) at the point (a,b):

fz(a,b) =0 = fy(a7 b)

If the first-order conditions are satisfied at (a,b), then the
quadratic Taylor polynomial for f(x,y) centered at (a,b) looks

like this:

fuo(a,b)
i 2

TZ(way):f(aab) (x_a)Q+fxy(aab)(x_a)(y_b)

where A = fm(;’ b>, B = fuy(a,b) and C = fyy(;’b).




If (x,y) is close to (a,b), then f(x,y) = Ts(x,y), and therefore

f(x,y) — fla,b) = Ta(z,y) — f(a,b)
= A(z —a)’ + B(z — a)(y — b) + C(y — b)*.

There are three cases to consider:
Az —a)* + Bz —a)(y—0b)+C(y—0)*>0 forall (z,y).
. Alx —a)’>+ Bz —a)(y—0)+C(y—5)? <0 forall (z,y).

. Alx—a)*+B(x—a)(y—0b)+C(y—0b)* takes positive values at some

points and negative values at other points.

FEach of these cases characterizes the critical value differently...




1. If A(x —a)* + B(x —a)(y — b) + C(y — b)? > 0 for all (z,y).

Then f(z,) — f(a,b) ~ Az — a)* + B(z — a)(y — b) + C(y — b)* > 0
for all points (x,y) that are sufficiently close to (a,b), so that f(a,b)

is a local mintmum value.
. If A(x —a)? + B(z —a)(y —b) + C(y — b)? <0 for all (z,y).

Then f(z,) — f(a,b) ~ Az — a)* + B(z — a)(y — b) + C(y — b)* < 0
for all points (x,y) that are sufficiently close to (a,b), so that f(a,b)

is a local maximum value.

. If A(x — a)®> + B(x — a)(y — b) + C(y — b)? takes both positive and

negative values,

Then f(x,y) — f(a,b) > 0 at some points (z,y) that are close to

(a,b), and f(z,y) — f(a,b) < 0 at other points (z,y) that are close
to (a,b). In this case, f(a,b) is neither a local mazimum nor a local
minimum value and the point (a, b, f(a,b)) is called a saddle point
on the graph z = f(x,y).




In case 1, in the vicinity of (a, b, f(a,b)) (the orange dot), the graph of
z = f(x,y) looks like this:




In case 2, in the vicinity of (a,b, f(a,b)), the graph of z = f(x,y) looks
like this:




In case 3, in the vicinity of (a,b, f(a,b)), the graph of z = f(x,y) looks
like this:




In general, z = f(x,y) may have multiple critical points and exhibit
different behavior at different critical points, as in the case of function
z2=10—(z—1)? - (y —2)* + Z(z — 1)* + & (y — 2)*, whose graph is
depicted below.




Question: Given a critical point (a,b), how do we determine which case

we are in?

Answer: We use the algebraic identity:

Az —a)? + B(x —a)(y — b) + C(y — b)?

— A ([(:1: —a) + %(y— b)| + (4AC — B2>(y4j4;’) >

= A(U? + DV?)

A — f:cx(av b>
2

B = fyy(a,b), C =

B y—b
(y—b) ; V—W

D =4AC — B = fo.(a,b) fyy(a,b) — fzyu(a,b)?.
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Conclusion: If (z,y) is close to (a,b), then

f(x,y) — f(a,b) = A (U2 —|—DV2)

where A= fo.(a,b) and D = fo.(a,b)f,,(a,b) — fuy(a,b)?.
Therefore...
1. If D > 0 and A > 0, then A (U? + DV?) >0, and if (x,y) is close to
(a,b) then
fla,y) — f(a,b) =0,

so f(a,b) is a local minimum value.

2. If D>0and A <0, then A (U2 + DVZ) < 0, and if (x,y) is close to
(a,b) then
f(ZU,y) o f(a7b) < 07

so f(a,b) is a local maximum value.




Conclusion: If (z,y) is close to (a,b), then

f(@,y) — fla,b) ~ A(U* + DV?)
where A= fo.(a,b) and D = fo.(a,b)f,,(a,b) — fuy(a,b)?.
Therefore...

3. If D < 0, then (U2+DV2) > 0if U # 0 and V = 0, but
(U2+DV?) <0if V#0and U =0.

Therefore there are points (x,y) close to (a,b) where
f(z,y) — f(a,b) = A (U* + DV?) > 0,

and there are also (different) points (z,y) close to (a,b) where

f(z,y) — fla,b) = A(U? + DV?) <0,

This means that, in this case, f(a,b) is neither a maximum nor a

minimum value.




The second derivative test for two variables:

If fz(a,b) =0 and f,(a,b) =0 (i.e., if (a,b) is critical point), then find
the second order partial derivatives, frz(a,b), foy(a,b) and f,,(a,b) and
the discriminant

D(CL, b) — fxx(CL, b)fyy(a’a b) o f;cZy(a’7 b)7

and then analyze:

1. If D(a,b) > 0 and f,.(a,b) > 0, then f(a,b) is a local minimum

value.

. If D(a,b) > 0 and f,.(a,b) < 0, then f(a,b) is a local maximum

value.

. If D(a,b) < 0 then f(a,b) is neither a local minimum value nor a

local maximum value — (a, b, f(a,b)) is a saddle point on the graph
2= f(z,y).

(*) If D(a,b) =0, then the second derivative test yields no conclusions.




Example. Profit maximization (continued).

We found that the critical prices for the profit function
I1 = —3P3 +4P4Pg — 2P% + 100P4 + 80Pz — 5000
are P} =90 and P = 110, and the corresponding critical profit is
IT* = 2900.

We will use the second derivative test to verify that the critical profit is
indeed a maximum value. The first order derivatives are

IIp, = —6P4, +4Pp +100 and Ilp, =4P4 —4Pp+ 80
so the second order derivatives are
HPAPA :—6, HPAPB — 4 and HPBPB = —4.

The discriminant is

D=1p,p,Up,p, — I3, p, =24—16=8 >0

and IIp, p, <0, so II* is a maximum, as hoped for.




Example: On Monday, we found the critical points and the critical

values of
flz,y) =2 +y° —zy +2°,

The partial derivatives are

fr =2 —y+32* and Jy =2y — .

and solving the pair of equations
20 —y + 3% =0
2y —x =0

we found that the critical points are (z1,y1) = (0,0) and (x2,y2) =
(—1/2,—1/4), with critical values f(0,0) = 0 and f(—1/2,—1/4) = 1/16.

On to the second derivative test:




Discriminant: fy, =246z, f,y=—-1 and f,, =2, s0

f2
fmwfyy Ty
N\ /—/\

D(z,y) = 2(2 + 62) — (—1)% = 122 + 3.

Analysis:

(*) D(0,0) =3 > 0 and f,,(0,0) =2 > 0, so f(0,0) = 0 is a relative

mintmum value.

(*) D(-1/2,-1/4) = =3 < 0, so f(—1/2,—1/4) = 5/16 is neither a

minitmum nor a mazximum value.




Graph of z = 22 + y? — zy + 23

(*) The two blue dots are located at the critical points on the graph.




