
Example: Profit maximization.

Joint weekly demand functions for a firm’s competing products:

QA = 100− 3PA + 2PB

QB = 60 + 2PA − 2PB

Weekly cost of producing QA units of product A and QB units of product

B:

C = 20QA + 30QB + 1200

Firm’s weekly profit function

Π = PAQA + PBQB − C

= PA(100− 3PA + 2PB) + PB(60 + 2PA − 2PB)

− (20(100− 3PA + 2PB) + 30(60 + 2PA − 2PB) + 1200)

= −3P 2
A + 4PAPB − 2P 2

B + 100PA + 80PB − 5000
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Weekly profit function

Π = −3P 2
A + 4PAPB − 2P 2

B + 100PA + 80PB − 5000

First order conditions for max:

ΠPA
= 0 =⇒ −6PA + 4PB + 100 = 0

ΠPB
= 0 =⇒ 4PA − 4PB + 80 = 0

Adding the two equations together gives an equation for the critical PA

value:

−2PA + 180 = 0 =⇒ P ∗
A = 90.

Substituting this in the second equation (ΠPB
= 0) yields the critical

PB value:

4 · 90− 4PB + 80 = 0 =⇒ −4pB + 440 = 0 =⇒ P ∗
B = 110.

The corresponding critical weekly outputs are

Q∗
A = 100− 3P ∗

A + 2P ∗
B = 50 and Q∗

B = 60 + 2P ∗
A − 2P ∗

B = 20.
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The critical weekly revenue is

R∗ = P ∗
AQ

∗
A + P ∗

BQ
∗
B = 6700,

the critical weekly cost is

C∗ = 20Q∗
A + 30Q∗

B + 1200 = 3800

and the critical weekly profit is

Π∗ = R∗ − C∗ = 2900.

The critical question:

Is Π∗ the maximum weekly profit?
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Second Derivative Test - Two Variable Case

(N) First order conditions for a local extreme value of the function

z = f(x, y) at the point (a, b):

fx(a, b) = 0 = fy(a, b)

(N) If the first-order conditions are satisfied at (a, b), then the

quadratic Taylor polynomial for f(x, y) centered at (a, b) looks

like this:

T2(x, y) = f(a, b) +
fxx(a, b)

2
(x− a)2 + fxy(a, b)(x− a)(y − b)

+
fyy(a, b)

2
(y − b)2

= f(a, b) + A(x− a)2 + B(x− a)(y − b) + C(y − b)2

where A =
fxx(a, b)

2
, B = fxy(a, b) and C =

fyy(a, b)

2
.
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If (x, y) is close to (a, b), then f(x, y) ≈ T2(x, y), and therefore

f(x, y)− f(a, b) ≈ T2(x, y)− f(a, b)

= A(x− a)2 + B(x− a)(y − b) + C(y − b)2.

There are three cases to consider:

1. A(x− a)2 + B(x− a)(y − b) + C(y − b)2 ≥ 0 for all (x, y).

2. A(x− a)2 + B(x− a)(y − b) + C(y − b)2 ≤ 0 for all (x, y).

3. A(x−a)2 +B(x−a)(y− b)+C(y− b)2 takes positive values at some

points and negative values at other points.

Each of these cases characterizes the critical value differently...
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1. If A(x− a)2 + B(x− a)(y − b) + C(y − b)2 ≥ 0 for all (x, y).

Then f(x, y)− f(a, b) ≈ A(x− a)2 +B(x− a)(y− b) +C(y− b)2 ≥ 0

for all points (x, y) that are sufficiently close to (a, b), so that f(a, b)

is a local minimum value.

2. If A(x− a)2 + B(x− a)(y − b) + C(y − b)2 ≤ 0 for all (x, y).

Then f(x, y)− f(a, b) ≈ A(x− a)2 +B(x− a)(y− b) +C(y− b)2 ≤ 0

for all points (x, y) that are sufficiently close to (a, b), so that f(a, b)

is a local maximum value.

3. If A(x − a)2 + B(x − a)(y − b) + C(y − b)2 takes both positive and

negative values,

Then f(x, y) − f(a, b) ≥ 0 at some points (x, y) that are close to

(a, b), and f(x, y) − f(a, b) ≤ 0 at other points (x, y) that are close

to (a, b). In this case, f(a, b) is neither a local maximum nor a local

minimum value and the point (a, b, f(a, b)) is called a saddle point

on the graph z = f(x, y).

6



In case 1, in the vicinity of (a, b, f(a, b)) (the orange dot), the graph of

z = f(x, y) looks like this:
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In case 2, in the vicinity of (a, b, f(a, b)), the graph of z = f(x, y) looks

like this:
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In case 3, in the vicinity of (a, b, f(a, b)), the graph of z = f(x, y) looks

like this:
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In general, z = f(x, y) may have multiple critical points and exhibit

different behavior at different critical points, as in the case of function

z = 10 − (x − 1)2 − (y − 2)2 + 2
81 (x − 1)4 + 2

81 (y − 2)4, whose graph is

depicted below.
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Question: Given a critical point (a, b), how do we determine which case

we are in?

Answer: We use the algebraic identity:

A(x− a)2 + B(x− a)(y − b) + C(y − b)2

= A

([
(x− a) +

B

2A
(y − b)

]2
+ (4AC −B2)

(y − b)2

4A2

)
= A(U2 + DV 2)

where

A =
fxx(a, b)

2
, B = fxy(a, b), C =

fyy(a, b)

2
,

U =

[
(x− a) +

B

2A
(y − b)

]
, V =

y − b

2A

and

D = 4AC −B2 = fxx(a, b)fyy(a, b)− fxy(a, b)2.
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Conclusion: If (x, y) is close to (a, b), then

f(x, y)− f(a, b) ≈ A
(
U2 + DV 2

)
where A = fxx(a, b) and D = fxx(a, b)fyy(a, b)− fxy(a, b)2.

Therefore...

1. If D > 0 and A > 0, then A
(
U2 + DV 2

)
≥ 0, and if (x, y) is close to

(a, b) then

f(x, y)− f(a, b) ≥ 0,

so f(a, b) is a local minimum value.

2. If D > 0 and A < 0, then A
(
U2 + DV 2

)
≤ 0, and if (x, y) is close to

(a, b) then

f(x, y)− f(a, b) ≤ 0,

so f(a, b) is a local maximum value.
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Conclusion: If (x, y) is close to (a, b), then

f(x, y)− f(a, b) ≈ A
(
U2 + DV 2

)
where A = fxx(a, b) and D = fxx(a, b)fyy(a, b)− fxy(a, b)2.

Therefore...

3. If D < 0, then
(
U2 + DV 2

)
> 0 if U 6= 0 and V = 0, but(

U2 + DV 2
)
< 0 if V 6= 0 and U = 0.

Therefore there are points (x, y) close to (a, b) where

f(x, y)− f(a, b) ≈ A
(
U2 + DV 2

)
> 0,

and there are also (different) points (x, y) close to (a, b) where

f(x, y)− f(a, b) ≈ A
(
U2 + DV 2

)
< 0,

This means that, in this case, f(a, b) is neither a maximum nor a

minimum value.
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The second derivative test for two variables:

If fx(a, b) = 0 and fy(a, b) = 0 (i.e., if (a, b) is critical point), then find

the second order partial derivatives, fxx(a, b), fxy(a, b) and fyy(a, b) and

the discriminant

D(a, b) = fxx(a, b)fyy(a, b)− f2
xy(a, b),

and then analyze:

1. If D(a, b) > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum

value.

2. If D(a, b) > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum

value.

3. If D(a, b) < 0 then f(a, b) is neither a local minimum value nor a

local maximum value — (a, b, f(a, b)) is a saddle point on the graph

z = f(x, y).

(*) If D(a, b) = 0, then the second derivative test yields no conclusions.

14



Example. Profit maximization (continued).

We found that the critical prices for the profit function

Π = −3P 2
A + 4PAPB − 2P 2

B + 100PA + 80PB − 5000

are P ∗
A = 90 and P ∗

B = 110, and the corresponding critical profit is

Π∗ = 2900.

We will use the second derivative test to verify that the critical profit is

indeed a maximum value. The first order derivatives are

ΠPA
= −6PA + 4PB + 100 and ΠPB

= 4PA − 4PB + 80

so the second order derivatives are

ΠPAPA
= −6, ΠPAPB

= 4 and ΠPBPB
= −4.

The discriminant is

D = ΠPAPA
ΠPBPB

−Π2
PAPB

= 24− 16 = 8 > 0

and ΠPAPA
< 0, so Π∗ is a maximum, as hoped for.

15



Example: On Monday, we found the critical points and the critical

values of

f(x, y) = x2 + y2 − xy + x3.

The partial derivatives are

fx = 2x− y + 3x2 and fy = 2y − x.

and solving the pair of equations

2x− y + 3x2 = 0

2y − x = 0

we found that the critical points are (x1, y1) = (0, 0) and (x2, y2) =

(−1/2,−1/4), with critical values f(0, 0) = 0 and f(−1/2,−1/4) = 1/16.

On to the second derivative test:
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Discriminant: fxx = 2 + 6x, fxy = −1 and fyy = 2, so

D(x, y) =

fxxfyy︷ ︸︸ ︷
2(2 + 6x)−

f2
xy︷ ︸︸ ︷

(−1)2 = 12x + 3.

Analysis:

(*) D(0, 0) = 3 > 0 and fxx(0, 0) = 2 > 0, so f(0, 0) = 0 is a relative

minimum value.

(*) D(−1/2,−1/4) = −3 < 0, so f(−1/2,−1/4) = 5/16 is neither a

minimum nor a maximum value.
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Graph of z = x2 + y2 − xy + x3

(*) The two blue dots are located at the critical points on the graph.
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